Newer
Older
BlackoutClient / Assets / Best HTTP / Source / SecureProtocol / math / ec / ECAlgorithms.cs
#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
#pragma warning disable
using System;

using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Endo;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Multiplier;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.Field;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.Raw;

namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC
{
    public class ECAlgorithms
    {
        public static bool IsF2mCurve(ECCurve c)
        {
            return IsF2mField(c.Field);
        }

        public static bool IsF2mField(IFiniteField field)
        {
            return field.Dimension > 1 && field.Characteristic.Equals(BigInteger.Two)
                && field is IPolynomialExtensionField;
        }

        public static bool IsFpCurve(ECCurve c)
        {
            return IsFpField(c.Field);
        }

        public static bool IsFpField(IFiniteField field)
        {
            return field.Dimension == 1;
        }

        public static ECPoint SumOfMultiplies(ECPoint[] ps, BigInteger[] ks)
        {
            if (ps == null || ks == null || ps.Length != ks.Length || ps.Length < 1)
                throw new ArgumentException("point and scalar arrays should be non-null, and of equal, non-zero, length");

            int count = ps.Length;
            switch (count)
            {
                case 1:
                    return ps[0].Multiply(ks[0]);
                case 2:
                    return SumOfTwoMultiplies(ps[0], ks[0], ps[1], ks[1]);
                default:
                    break;
            }

            ECPoint p = ps[0];
            ECCurve c = p.Curve;

            ECPoint[] imported = new ECPoint[count];
            imported[0] = p;
            for (int i = 1; i < count; ++i)
            {
                imported[i] = ImportPoint(c, ps[i]);
            }

            GlvEndomorphism glvEndomorphism = c.GetEndomorphism() as GlvEndomorphism;
            if (glvEndomorphism != null)
            {
                return ImplCheckResult(ImplSumOfMultipliesGlv(imported, ks, glvEndomorphism));
            }

            return ImplCheckResult(ImplSumOfMultiplies(imported, ks));
        }

        public static ECPoint SumOfTwoMultiplies(ECPoint P, BigInteger a, ECPoint Q, BigInteger b)
        {
            ECCurve cp = P.Curve;
            Q = ImportPoint(cp, Q);

            // Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
            {
                AbstractF2mCurve f2mCurve = cp as AbstractF2mCurve;
                if (f2mCurve != null && f2mCurve.IsKoblitz)
                {
                    return ImplCheckResult(P.Multiply(a).Add(Q.Multiply(b)));
                }
            }

            GlvEndomorphism glvEndomorphism = cp.GetEndomorphism() as GlvEndomorphism;
            if (glvEndomorphism != null)
            {
                return ImplCheckResult(
                    ImplSumOfMultipliesGlv(new ECPoint[] { P, Q }, new BigInteger[] { a, b }, glvEndomorphism));
            }

            return ImplCheckResult(ImplShamirsTrickWNaf(P, a, Q, b));
        }

        /*
        * "Shamir's Trick", originally due to E. G. Straus
        * (Addition chains of vectors. American Mathematical Monthly,
        * 71(7):806-808, Aug./Sept. 1964)
        *  
        * Input: The points P, Q, scalar k = (km?, ... , k1, k0)
        * and scalar l = (lm?, ... , l1, l0).
        * Output: R = k * P + l * Q.
        * 1: Z <- P + Q
        * 2: R <- O
        * 3: for i from m-1 down to 0 do
        * 4:        R <- R + R        {point doubling}
        * 5:        if (ki = 1) and (li = 0) then R <- R + P end if
        * 6:        if (ki = 0) and (li = 1) then R <- R + Q end if
        * 7:        if (ki = 1) and (li = 1) then R <- R + Z end if
        * 8: end for
        * 9: return R
        */
        public static ECPoint ShamirsTrick(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
        {
            ECCurve cp = P.Curve;
            Q = ImportPoint(cp, Q);

            return ImplCheckResult(ImplShamirsTrickJsf(P, k, Q, l));
        }

        public static ECPoint ImportPoint(ECCurve c, ECPoint p)
        {
            ECCurve cp = p.Curve;
            if (!c.Equals(cp))
                throw new ArgumentException("Point must be on the same curve");

            return c.ImportPoint(p);
        }

        public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len)
        {
            MontgomeryTrick(zs, off, len, null);
        }

        public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len, ECFieldElement scale)
        {
            /*
             * Uses the "Montgomery Trick" to invert many field elements, with only a single actual
             * field inversion. See e.g. the paper:
             * "Fast Multi-scalar Multiplication Methods on Elliptic Curves with Precomputation Strategy Using Montgomery Trick"
             * by Katsuyuki Okeya, Kouichi Sakurai.
             */

            ECFieldElement[] c = new ECFieldElement[len];
            c[0] = zs[off];

            int i = 0;
            while (++i < len)
            {
                c[i] = c[i - 1].Multiply(zs[off + i]);
            }

            --i;

            if (scale != null)
            {
                c[i] = c[i].Multiply(scale);
            }

            ECFieldElement u = c[i].Invert();

            while (i > 0)
            {
                int j = off + i--;
                ECFieldElement tmp = zs[j];
                zs[j] = c[i].Multiply(u);
                u = u.Multiply(tmp);
            }

            zs[off] = u;
        }

        /**
         * Simple shift-and-add multiplication. Serves as reference implementation
         * to verify (possibly faster) implementations, and for very small scalars.
         * 
         * @param p
         *            The point to multiply.
         * @param k
         *            The multiplier.
         * @return The result of the point multiplication <code>kP</code>.
         */
        public static ECPoint ReferenceMultiply(ECPoint p, BigInteger k)
        {
            BigInteger x = k.Abs();
            ECPoint q = p.Curve.Infinity;
            int t = x.BitLength;
            if (t > 0)
            {
                if (x.TestBit(0))
                {
                    q = p;
                }
                for (int i = 1; i < t; i++)
                {
                    p = p.Twice();
                    if (x.TestBit(i))
                    {
                        q = q.Add(p);
                    }
                }
            }
            return k.SignValue < 0 ? q.Negate() : q;
        }

        public static ECPoint ValidatePoint(ECPoint p)
        {
            if (!p.IsValid())
                throw new InvalidOperationException("Invalid point");

            return p;
        }

        public static ECPoint CleanPoint(ECCurve c, ECPoint p)
        {
            ECCurve cp = p.Curve;
            if (!c.Equals(cp))
                throw new ArgumentException("Point must be on the same curve", "p");

            return c.DecodePoint(p.GetEncoded(false));
        }

        internal static ECPoint ImplCheckResult(ECPoint p)
        {
            if (!p.IsValidPartial())
                throw new InvalidOperationException("Invalid result");

            return p;
        }

        internal static ECPoint ImplShamirsTrickJsf(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
        {
            ECCurve curve = P.Curve;
            ECPoint infinity = curve.Infinity;

            // TODO conjugate co-Z addition (ZADDC) can return both of these
            ECPoint PaddQ = P.Add(Q);
            ECPoint PsubQ = P.Subtract(Q);

            ECPoint[] points = new ECPoint[] { Q, PsubQ, P, PaddQ };
            curve.NormalizeAll(points);

            ECPoint[] table = new ECPoint[] {
            points[3].Negate(), points[2].Negate(), points[1].Negate(),
            points[0].Negate(), infinity, points[0],
            points[1], points[2], points[3] };

            byte[] jsf = WNafUtilities.GenerateJsf(k, l);

            ECPoint R = infinity;

            int i = jsf.Length;
            while (--i >= 0)
            {
                int jsfi = jsf[i];

                // NOTE: The shifting ensures the sign is extended correctly
                int kDigit = ((jsfi << 24) >> 28), lDigit = ((jsfi << 28) >> 28);

                int index = 4 + (kDigit * 3) + lDigit;
                R = R.TwicePlus(table[index]);
            }

            return R;
        }

        internal static ECPoint ImplShamirsTrickWNaf(ECPoint P, BigInteger k,
            ECPoint Q, BigInteger l)
        {
            bool negK = k.SignValue < 0, negL = l.SignValue < 0;

            BigInteger kAbs = k.Abs(), lAbs = l.Abs();

            int minWidthP = WNafUtilities.GetWindowSize(kAbs.BitLength, 8);
            int minWidthQ = WNafUtilities.GetWindowSize(lAbs.BitLength, 8);

            WNafPreCompInfo infoP = WNafUtilities.Precompute(P, minWidthP, true);
            WNafPreCompInfo infoQ = WNafUtilities.Precompute(Q, minWidthQ, true);

            // When P, Q are 'promoted' (i.e. reused several times), switch to fixed-point algorithm
            {
                ECCurve c = P.Curve;
                int combSize = FixedPointUtilities.GetCombSize(c);
                if (!negK && !negL
                    && k.BitLength <= combSize && l.BitLength <= combSize
                    && infoP.IsPromoted && infoQ.IsPromoted)
                {
                    return ImplShamirsTrickFixedPoint(P, k, Q, l);
                }
            }

            int widthP = System.Math.Min(8, infoP.Width);
            int widthQ = System.Math.Min(8, infoQ.Width);

            ECPoint[] preCompP = negK ? infoP.PreCompNeg : infoP.PreComp;
            ECPoint[] preCompQ = negL ? infoQ.PreCompNeg : infoQ.PreComp;
            ECPoint[] preCompNegP = negK ? infoP.PreComp : infoP.PreCompNeg;
            ECPoint[] preCompNegQ = negL ? infoQ.PreComp : infoQ.PreCompNeg;

            byte[] wnafP = WNafUtilities.GenerateWindowNaf(widthP, kAbs);
            byte[] wnafQ = WNafUtilities.GenerateWindowNaf(widthQ, lAbs);

            return ImplShamirsTrickWNaf(preCompP, preCompNegP, wnafP, preCompQ, preCompNegQ, wnafQ);
        }

        internal static ECPoint ImplShamirsTrickWNaf(ECEndomorphism endomorphism, ECPoint P, BigInteger k, BigInteger l)
        {
            bool negK = k.SignValue < 0, negL = l.SignValue < 0;

            k = k.Abs();
            l = l.Abs();

            int minWidth = WNafUtilities.GetWindowSize(System.Math.Max(k.BitLength, l.BitLength), 8);

            WNafPreCompInfo infoP = WNafUtilities.Precompute(P, minWidth, true);
            ECPoint Q = EndoUtilities.MapPoint(endomorphism, P);
            WNafPreCompInfo infoQ = WNafUtilities.PrecomputeWithPointMap(Q, endomorphism.PointMap, infoP, true);

            int widthP = System.Math.Min(8, infoP.Width);
            int widthQ = System.Math.Min(8, infoQ.Width);

            ECPoint[] preCompP = negK ? infoP.PreCompNeg : infoP.PreComp;
            ECPoint[] preCompQ = negL ? infoQ.PreCompNeg : infoQ.PreComp;
            ECPoint[] preCompNegP = negK ? infoP.PreComp : infoP.PreCompNeg;
            ECPoint[] preCompNegQ = negL ? infoQ.PreComp : infoQ.PreCompNeg;

            byte[] wnafP = WNafUtilities.GenerateWindowNaf(widthP, k);
            byte[] wnafQ = WNafUtilities.GenerateWindowNaf(widthQ, l);

            return ImplShamirsTrickWNaf(preCompP, preCompNegP, wnafP, preCompQ, preCompNegQ, wnafQ);
        }

        private static ECPoint ImplShamirsTrickWNaf(ECPoint[] preCompP, ECPoint[] preCompNegP, byte[] wnafP,
            ECPoint[] preCompQ, ECPoint[] preCompNegQ, byte[] wnafQ)
        {
            int len = System.Math.Max(wnafP.Length, wnafQ.Length);

            ECCurve curve = preCompP[0].Curve;
            ECPoint infinity = curve.Infinity;

            ECPoint R = infinity;
            int zeroes = 0;

            for (int i = len - 1; i >= 0; --i)
            {
                int wiP = i < wnafP.Length ? (int)(sbyte)wnafP[i] : 0;
                int wiQ = i < wnafQ.Length ? (int)(sbyte)wnafQ[i] : 0;

                if ((wiP | wiQ) == 0)
                {
                    ++zeroes;
                    continue;
                }

                ECPoint r = infinity;
                if (wiP != 0)
                {
                    int nP = System.Math.Abs(wiP);
                    ECPoint[] tableP = wiP < 0 ? preCompNegP : preCompP;
                    r = r.Add(tableP[nP >> 1]);
                }
                if (wiQ != 0)
                {
                    int nQ = System.Math.Abs(wiQ);
                    ECPoint[] tableQ = wiQ < 0 ? preCompNegQ : preCompQ;
                    r = r.Add(tableQ[nQ >> 1]);
                }

                if (zeroes > 0)
                {
                    R = R.TimesPow2(zeroes);
                    zeroes = 0;
                }

                R = R.TwicePlus(r);
            }

            if (zeroes > 0)
            {
                R = R.TimesPow2(zeroes);
            }

            return R;
        }

        internal static ECPoint ImplSumOfMultiplies(ECPoint[] ps, BigInteger[] ks)
        {
            int count = ps.Length;
            bool[] negs = new bool[count];
            WNafPreCompInfo[] infos = new WNafPreCompInfo[count];
            byte[][] wnafs = new byte[count][];

            for (int i = 0; i < count; ++i)
            {
                BigInteger ki = ks[i]; negs[i] = ki.SignValue < 0; ki = ki.Abs();

                int minWidth = WNafUtilities.GetWindowSize(ki.BitLength, 8);
                WNafPreCompInfo info = WNafUtilities.Precompute(ps[i], minWidth, true);

                int width = System.Math.Min(8, info.Width);

                infos[i] = info; 
                wnafs[i] = WNafUtilities.GenerateWindowNaf(width, ki);
            }

            return ImplSumOfMultiplies(negs, infos, wnafs);
        }

        internal static ECPoint ImplSumOfMultipliesGlv(ECPoint[] ps, BigInteger[] ks, GlvEndomorphism glvEndomorphism)
        {
            BigInteger n = ps[0].Curve.Order;

            int len = ps.Length;

            BigInteger[] abs = new BigInteger[len << 1];
            for (int i = 0, j = 0; i < len; ++i)
            {
                BigInteger[] ab = glvEndomorphism.DecomposeScalar(ks[i].Mod(n));
                abs[j++] = ab[0];
                abs[j++] = ab[1];
            }

            if (glvEndomorphism.HasEfficientPointMap)
            {
                return ImplSumOfMultiplies(glvEndomorphism, ps, abs);
            }

            ECPoint[] pqs = new ECPoint[len << 1];
            for (int i = 0, j = 0; i < len; ++i)
            {
                ECPoint p = ps[i];
                ECPoint q = EndoUtilities.MapPoint(glvEndomorphism, p); 
                pqs[j++] = p;
                pqs[j++] = q;
            }

            return ImplSumOfMultiplies(pqs, abs);
        }

        internal static ECPoint ImplSumOfMultiplies(ECEndomorphism endomorphism, ECPoint[] ps, BigInteger[] ks)
        {
            int halfCount = ps.Length, fullCount = halfCount << 1;

            bool[] negs = new bool[fullCount];
            WNafPreCompInfo[] infos = new WNafPreCompInfo[fullCount];
            byte[][] wnafs = new byte[fullCount][];

            ECPointMap pointMap = endomorphism.PointMap;

            for (int i = 0; i < halfCount; ++i)
            {
                int j0 = i << 1, j1 = j0 + 1;

                BigInteger kj0 = ks[j0]; negs[j0] = kj0.SignValue < 0; kj0 = kj0.Abs();
                BigInteger kj1 = ks[j1]; negs[j1] = kj1.SignValue < 0; kj1 = kj1.Abs();

                int minWidth = WNafUtilities.GetWindowSize(System.Math.Max(kj0.BitLength, kj1.BitLength), 8);

                ECPoint P = ps[i];
                WNafPreCompInfo infoP = WNafUtilities.Precompute(P, minWidth, true);
                ECPoint Q = EndoUtilities.MapPoint(endomorphism, P);
                WNafPreCompInfo infoQ = WNafUtilities.PrecomputeWithPointMap(Q, pointMap, infoP, true);

                int widthP = System.Math.Min(8, infoP.Width);
                int widthQ = System.Math.Min(8, infoQ.Width);

                infos[j0] = infoP;
                infos[j1] = infoQ;
                wnafs[j0] = WNafUtilities.GenerateWindowNaf(widthP, kj0);
                wnafs[j1] = WNafUtilities.GenerateWindowNaf(widthQ, kj1);
            }

            return ImplSumOfMultiplies(negs, infos, wnafs);
        }

        private static ECPoint ImplSumOfMultiplies(bool[] negs, WNafPreCompInfo[] infos, byte[][] wnafs)
        {
            int len = 0, count = wnafs.Length;
            for (int i = 0; i < count; ++i)
            {
                len = System.Math.Max(len, wnafs[i].Length);
            }

            ECCurve curve = infos[0].PreComp[0].Curve;
            ECPoint infinity = curve.Infinity;

            ECPoint R = infinity;
            int zeroes = 0;

            for (int i = len - 1; i >= 0; --i)
            {
                ECPoint r = infinity;

                for (int j = 0; j < count; ++j)
                {
                    byte[] wnaf = wnafs[j];
                    int wi = i < wnaf.Length ? (int)(sbyte)wnaf[i] : 0;
                    if (wi != 0)
                    {
                        int n = System.Math.Abs(wi);
                        WNafPreCompInfo info = infos[j];
                        ECPoint[] table = (wi < 0 == negs[j]) ? info.PreComp : info.PreCompNeg;
                        r = r.Add(table[n >> 1]);
                    }
                }

                if (r == infinity)
                {
                    ++zeroes;
                    continue;
                }

                if (zeroes > 0)
                {
                    R = R.TimesPow2(zeroes);
                    zeroes = 0;
                }

                R = R.TwicePlus(r);
            }

            if (zeroes > 0)
            {
                R = R.TimesPow2(zeroes);
            }

            return R;
        }

        private static ECPoint ImplShamirsTrickFixedPoint(ECPoint p, BigInteger k, ECPoint q, BigInteger l)
        {
            ECCurve c = p.Curve;
            int combSize = FixedPointUtilities.GetCombSize(c);

            if (k.BitLength > combSize || l.BitLength > combSize)
            {
                /*
                 * TODO The comb works best when the scalars are less than the (possibly unknown) order.
                 * Still, if we want to handle larger scalars, we could allow customization of the comb
                 * size, or alternatively we could deal with the 'extra' bits either by running the comb
                 * multiple times as necessary, or by using an alternative multiplier as prelude.
                 */
                throw new InvalidOperationException("fixed-point comb doesn't support scalars larger than the curve order");
            }

            FixedPointPreCompInfo infoP = FixedPointUtilities.Precompute(p);
            FixedPointPreCompInfo infoQ = FixedPointUtilities.Precompute(q);

            ECLookupTable lookupTableP = infoP.LookupTable;
            ECLookupTable lookupTableQ = infoQ.LookupTable;

            int widthP = infoP.Width;
            int widthQ = infoQ.Width;

            // TODO This shouldn't normally happen, but a better "solution" is desirable anyway
            if (widthP != widthQ)
            {
                FixedPointCombMultiplier m = new FixedPointCombMultiplier();
                ECPoint r1 = m.Multiply(p, k);
                ECPoint r2 = m.Multiply(q, l);
                return r1.Add(r2);
            }

            int width = widthP;

            int d = (combSize + width - 1) / width;

            ECPoint R = c.Infinity;

            int fullComb = d * width;
            uint[] K = Nat.FromBigInteger(fullComb, k);
            uint[] L = Nat.FromBigInteger(fullComb, l);

            int top = fullComb - 1; 
            for (int i = 0; i < d; ++i)
            {
                uint secretIndexK = 0, secretIndexL = 0;

                for (int j = top - i; j >= 0; j -= d)
                {
                    uint secretBitK = K[j >> 5] >> (j & 0x1F);
                    secretIndexK ^= secretBitK >> 1;
                    secretIndexK <<= 1;
                    secretIndexK ^= secretBitK;

                    uint secretBitL = L[j >> 5] >> (j & 0x1F);
                    secretIndexL ^= secretBitL >> 1;
                    secretIndexL <<= 1;
                    secretIndexL ^= secretBitL;
                }

                ECPoint addP = lookupTableP.LookupVar((int)secretIndexK);
                ECPoint addQ = lookupTableQ.LookupVar((int)secretIndexL);

                ECPoint T = addP.Add(addQ);

                R = R.TwicePlus(T);
            }

            return R.Add(infoP.Offset).Add(infoQ.Offset);
        }
    }
}
#pragma warning restore
#endif